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1. Introduction  
 
The importance of finding efficient ways of quantifying terrestrial carbon stocks at a global 
scale has increased due to the concerns about global climate change. Exchange of carbon 
between forests and the atmosphere is a vital component of the global carbon cycle (Nelson et al. 
2003). Recent advances in remote sensing technology have facilitated rapid and inexpensive 
measurements of topography over large areas (Zhang et al. 2003). 
 
Lidar (light detection and ranging) has been studied since the 1960s (Flood 2001; Liu 2008). 
Airborne lidar for topographic data collection was developed in the 1980s (Krabill et al. 1984; 
Bufton et al. 1991), and commercial airborne lidar systems have been operational since the 
mid-1990s (Pfeifer and Briese 2007). There has been a significant increase in the use of lidar 
data for Digital Elevation Model (DEM) generation over the last decade as lidar systems have 
become more reliable, more accurate, and less expensive (Sithole and Vosselman 2003). Kraus 
and Pfeifer (1998) concluded that the accuracy of lidar-derived DEMs for forested areas is 
comparable to that of DEMs for open areas obtained using photogrammetric techniques. Various 
filtering methods have been developed to classify or separate raw lidar data into ground and 
non-ground data. However, automated filtering techniques are not perfectly accurate (Romano 
2004), and manual editing of the filtering results is often needed (Chen 2007; Chen et al. 2007).  
 
This paper presents a novel framework capable of automatically estimating the ground and top 
of canopy (TOC) from noisy high-altitude lidar data. This framework utilizes the technique of 
active contour models in making this estimation. The rest of the paper is organized as follows. 
The methodology and main contribution of the paper are presented in section 2. Section 3 
describes the results that we have obtained. Finally, section 4 concludes the paper. 
 
2. Methodology 
 
The main contribution of this paper is to introduce the development of a novel framework based 
on active contour models (often called deformable models or “snakes”) to estimate ground and 
TOC from discrete LIDAR data. The proposed framework is summarized in Figure 1. Active 
contours are expressed as an energy minimization process (Kass et al. 1988), and they rely on 
higher level mechanisms to place them near a desired solution. The framework presented here 
proposes an automatic procedure to discover a region of interest (ROI) to initialize the location 
of the snakes near ground and TOC. A good selection of ROI helps prevent the attraction of 
snakes to incorrect solutions, and can improve computation speed by reducing the number of 
iterations required to converge. This paper describes an open-curve snake algorithm that has 
efficiently located ground and TOC in some experiments, as well as a closed-curve snake 
algorithm that has produced results with higher accuracy. 
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Figure 1: Overview of system. The goal is to detect curves that correspond to the ground and to the top of 
the canopy (TOC).  
 
2.1 Lidar data 
 
Lidar sensing produces a set of three-dimensional (3D) points, where each point is represented 
by coordinates (x, y, z). In order to apply image processing techniques, our first step is to map 
these points onto a two-dimensional (2D) binary image. An example is given in Figure 2(a). 
 
2.2 Preprocessing 
 
A preprocessing step is needed to reduce noise in the image, and to provide an initial estimate 
for the optimization routine. This step is essential for avoiding incorrect results. In our current 
implementation, the system applies a median filter which dramatically reduces noise as shown 
in Figure 2(b). This filter is followed by a size filter which removes small isolated regions that 
may exist after the median filter (Figure 2(c)). 
 
2.3 Contour detection 
 
Active contours are typically implemented using an energy minimization process (Kass et al. 
1988). Given an initial curve v in the image, the curve is transformed through repeated steps that 
attempt to minimize an energy functional Esnake. The name “snake” results from the appearance 
of the curve v as it changes during the iterative process. 
 
The energy functional is commonly defined using several additive terms, such as the following: 
 

1

0
[ ( ( )) ( ( )) ( ( ))]snake int image conE E v s E v s E v s ds= + +∫                 

 

 
An “internal” energy term Eint affects the degree to which the contour can bend and stretch. An 
“external” energy term Eimage incorporates effects from image properties, such as magnitudes of 
intensity edges, and a second external energy term Econ may specify additional constraints. In 
this way, a snake represents a compromise between the curve’s own properties (such as 
curvature) and image properties (such as contrast or texture).  
 
In our implementation, the internal image energy is defined as follows: 

(1) 
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The first-order term represents the energy due to stretching (elastic energy), and the 
second-order term measures the energy due to bending (curvature energy). The image energy 
attracts the snake to low-level features in the image. The original formulation suggested that 
lines, edges and terminations could contribute to the energy function, as follows: 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2: Example of noise reduction steps. (a) Original lidar data. Each dark point represents a single 
lidar measurement. (b) Result of median filter. (c) Result of size filter. For this example, the points that 
remain are near the ground and vegetation. 
 

(2) 
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A greedy algorithm can be used to search for a solution (Williams and Shah 1992). The process 
starts by specifying an initial contour, and then the snake evolves in an iterative manner by local 
neighborhood search around contour points to select new points that have lower overall energy. 
 
The framework proposed in this paper adapts this greedy approach for estimation of ground and 
TOC contours, with satisfactory results. The first algorithm starts with two snakes, one near the 
top of the image, and one near the bottom. External constraints force the first snake to move 
only downward in the image, and the second snake to move only upward. Other constraints 
keep the leftmost and rightmost points of both snakes at the image boundaries, and also keep the 
internal points evenly spaced. This approach produced good results with a very fast convergence 
and efficient calculations. However, this approach is necessarily very sensitive to noise, so the 
preprocessing step is crucial. One of the major drawbacks of the median filter is that it may 
remove some important data points leading to inaccurate estimations in many cases. Also, this 
approach did not converge well near sharp concavities, such as those caused by gaps in the 
canopy where no trees are present. 
 
The proposed solution to these problems has been to consider another snake algorithm that is 
more robust against noise, and is capable of handling concavities, sharp corners and background 
contamination that may present in the image. This approach is known as a geometric active 
contour (GAC) model, and the associated curve is represented implicitly using a level-set 
function. Chan and Vese (2001) introduced a GAC that is based on the Mumford-Shah 
functional (Mumford and Shah 1989). Their model uses regional image statistics for 
segmentation, and as a result it is sometimes called a region-based level-set model. 
 
The lidar data in the proposed framework can be interpreted as a bimodal image I0 that contains 
a single object of interest (vegetation plus ground) against a noisy but fairly regular background. 
Although our images are binary, we can consider the object and background to have pixels of 
average intensity levels c1 and c2, respectively. Then the goal can be formulated as a search for a 
closed curve C within the image such that all object pixels are inside the curve, and all 
background pixels are outside the curve. A new energy term can be written as 
 

        

 
Ideally, the above equation is minimized when the contour C is coincident with the boundary of 
the foreground object in the image. Let ψ(x, y) represent the signed Euclidean distance of an 
image point (x, y) from the curve C: 
 

0 ( , ) is on the curve
( , ) 0 ( , ) is inside the curve

0 ( , ) is outside the curve

if x y
x y if x y

if x y
ψ


= <
>   

 
The function ψ is therefore an implicit representation of the curve C, and is called the 
embedding function for C. An evolution equation is given by 
 

2 2
1 0 1 2 0 2[  ( ) ( ( ) ( ) )]div I c I c

t
ψ ψµ λ λ

ψ
∂ ∇

= − − + −
∂ ∇    

2 2
0 1 0 2( ) ( )

( ) ( , ) ( , )
inside C outside C

E C I x y c dxdy I x y c dxdy= − + −∫ ∫

(3) 

(4) 

(5) 

(6) 
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where λ1, λ2, and µ are constants. The first term, 𝑑𝑑𝑑𝑑𝑑𝑑( ∇𝜓𝜓|∇𝜓𝜓| ), represents the curvature of C and is 
calculated as 
 

2 2

2 2 3/2

2
( )

( )
xx y x y xy yy x

x y

div
ψ ψ ψ ψ ψ ψ ψψ

ψ ψ ψ
− +∇

= −
∇ +                  

 
The second term of (6), the model-fit error term, drives the evolution of the contour. This error 
term is minimized when the contour perfectly subdivides the image in such a way that the 
average intensities inside and outside the contour perfectly match the constants c1 and c2, 
respectively. 
 
An advantage of this approach is that strong intensity edges between foreground and 
background are not necessary for successful operation. However, this algorithm is again very 
sensitive to the initial location of the contours. A proposed solution to this problem is to use 
median and size filters as a method to estimate the ROI as a good initialization. This technique 
has led to good results in our experiments. 
 
2.4 Ground and top-of-canopy separation 
 
After detecting contours as described in the previous sections, the last stage is discriminating 
ground and TOC from the resultant contours. This task is straightforward in the open-curve 
approach, because the upper snake is assumed to lie on the TOC while the lower snake tracks 
the ground. However, for the GAC approach this step is a little trickier because the output of the 
snake procedure is a closed contour, or possibly several closed contours. In our approach, at 
selected columns of the image, the uppermost points from the contour are assigned to the TOC, 
and the lowest points from the contour are assigned to the ground. Interpolation is applied for 
any gaps that result in either curve. 
 
3. Experimental Results 
 
A MATLAB program was implemented to assess the framework explained in this paper. A 
dataset was obtained from NASA that comprise 15 files of simulated ICESat-2 lidar data 
(Abdalati et al. 2010). The 15 files represent 5 different flight transects (labeled Cedar-2, 
Cedar-4, SERC-1, SERC-3 and SERC-5), each on the order of 1.5 to 4 km in length. For each 
transect, ambient noise was added at 3 different levels, with the noise varying based on target 
reflectivity. The files designated as “0.5 MHz” simulate nighttime acquisitions, which is when 
ambient noise is at the lowest level. The other files are designated “2 MHz” and “5 MHz,” 
representing late daytime acquisitions with clear sky, and daytime acquisitions with a hazy 
atmosphere, respectively. 
 
Experimental results for some of these files are shown in Figures 3 and 4. For each figure, part 
(a) shows an example result for the open-curve method, and part (b) shows a result for the 
closed-curve GAC method. Each of these figures reveals insights for the two approaches. For 
the open-curve snake approach, a Distance Transform was used, which provided a non-negative 
value D(x, y) corresponding to the distance from pixel (x, y) to the nearest feature in the image. 
These values were used in the energy term Eimage of (1), instead of the more traditional values 
that depend on intensity-gradient values. From the GAC diagrams, notice that the TOC contours 
represents gaps in the tree line more accurately than for the open-curve method. 
 

(7) 
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(a) 

 
(b) 

Figure 3. Comparison between open and closed contour approaches for Cedar-2 data set. (a) Open-curve 
snake. (b) Closed-curve (region-based) snake. 
 

 
(a) 

 
(b) 

Figure 4: Comparison between open and closed contour approaches for SERC-3 data set. (a) Open-curve 
snake. (b) Closed-curve (region-based) snake. 
 
To evaluate the performance of both approaches, the statistical indicators known as recall and 
precision were computed. Recall R is the fraction of true signal points (according to the 
provided ground truth) that are successfully enclosed within the contours. Precision P is the 
fraction of true signal points from all the points enclosed within the detected contours. These 
indicators have been used for evaluation of image-retrieval and image-segmentation techniques 
(Martin et al. 2004), and are formally defined as  
 

                       
 
where TP, FP, and FN represent the numbers of true positives, false positives, and false 
negatives, respectively. In order to use a single performance measure that will allow for 
comparison of results, the harmonic mean of recall and precision was used, which is commonly 
referred to as the F-measure: 
 

                                                      
 
Ideal performance correspond to the case that R = 1 and P = 1, resulting in F = 1. Figure 5 
shows a comparison between the performances of the two approaches for the given data set. For 

(9) 

(8) 
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practically all of the data sets, the F-measure value for the closed-curve snake model is 
noticeably greater than the F-measure value for the open-curve snake. This result can perhaps 
be explained by the fact that the open-curve approach relies on the distance transform, which is 
more sensitive to noise. As expected, for both approaches the worst performance was observed 
for cases with the most severe noise (5 MHz rate). For the other noise levels, the F-measure 
values all exceeded 0.84. 
 

 
Figure 5: F-measure values that were obtained for both approaches. Except for one case at the far right, 
better results were obtained for the region-based (closed-curve) approach. Slightly different stopping 
criteria were employed in these experiments. 
 
4. Discussion 
 
This paper has proposed a novel framework capable of automatically estimating ground and 
top-of-canopy contours within noisy discrete lidar data. The method utilizes techniques based 
on deformable models, also known as snakes, which are common in the field of image analysis. 
Two different snake-based approaches were considered here. The open-curve approach, 
combined with an image-distance transform, achieved reasonable F-measure scores in most 
cases. The closed-curve technique was better in all but one of the test cases, and exhibited an 
F-measure score above 0.84 except at the worst noise level. Whereas deformable models are 
commonly used with gray-scale and color images, this is one of the first studies involving 
deformable models for binary images. 
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